jueves, 16 de febrero de 2012

Objetivos estadísticos (Métodos estadísticos disponibles)


Son aquellos que para poder llevarse a cabo requieren de un método estadístico disponible, pero no todos los objetivos son estadísticos así tenemos que en el nivel exploratorio que corresponde a la investigación cualitativa sus objetivos son hermenéuticos como traducir, esclarecer o detallar; por otro lado en el nivel aplicativo en el que no se busca ampliar el pul del conocimiento sino aplicar lo que ya se conoce los objetivos implican modificar la realidad actual, los objetivos del estudio son uno de los criterios más importantes a la hora de elegir el estadístico de prueba y podemos resumir la intencionalidad de los niveles de la investigación con los términos de esclarecer para el nivel exploratorio , conocer para la investigación cuantitativa denominada pura y mejorar para el nivel de la investigación aplicativa.

1. A nivel descriptivo
Determinar es cuando buscamos obtener el resultado de una variable subyacente o subjetiva denominada también constructo y utilizamos un instrumento documental.
Describir es para las variables que no son de estudio y que no involucra la utilización de instrumentos pues se tratan de variables unidimensionales o directas, nos sirven para enmarcar el contexto de la realidad que estamos estudiando.
Estimar es usado frecuentemente para la estimación puntual de un parámetro cuando utilizamos una muestra para el estudio de una población y claro de vemos mencionar  los intervalos de confianza de este parámetro.

2. A nivel relacional
Asociar, plantea que dos sucesos ocurren de manera simultánea en repetidas ocasiones y que esta concurrencia puede ser relación causal necesariamente sino podría atribuirse al azar.
Correlacionar, plantea que en un mismo individuo las unidades de una de sus variables se correlaciona con otra diferente para ello se requiere que sus dos variables sean numéricas.
Concordar, señala que los sucesos son concurrentes correspondiendo a diferentes observadores o  de pronto al mismo observador pero con instrumentos diferentes, las coincidencias son evaluadas por este objetivo estadístico.

3. A nivel explicativo
Evidenciar es propio de los estudios observacionales donde la finalidad del análisis estratificado es descartar asociaciones aleatorias, casuales o espurias, que habíamos detectado en el nivel investigativo anterior.
Demostrar es cuando el origen de los datos corresponde a un experimento, uno de los criterios de causalidad más importantes en la lista de Bradford Hill aquí pretendemos demostrar algo que previamente se había evidenciado.
Probar se utiliza luego de haber demostrado mediante un experimento y claro  se tiene que encontrar lo mismo de los estudios anteriores a esto se le denomina  consistencia o coherencia, la réplica de  los estudios utilizados previamente, otro de los criterios de causalidad que apoya la relación causa efecto.
4. A nivel predictivo
Predecir implica calcular la probabilidad de ocurrencia de un suceso en una serie de eventos, por esta razón lo que vamos a predecir siempre es una variable dicotómica, es decir si ocurrirá o no ocurrirá un evento como puede ser una complicación.
Pronosticar significa calcular la probabilidad de ocurrencia de un suceso en función al tiempo por esta razón la variable pronosticada es numérica, utilizada para eventos que siempre va a ocurrir como por ejemplo la muerte y es cuestión de calcular el momento en que esta ocurriría.
Prever implica calcular la probabilidad de necesitar, disponer o preparar medios contra futuras contingencias para ello debemos haber realizado los objetivos estadísticos anteriores y podremos conocer lo que se va a necesitar tal como lo hace las compañías de seguro y calculan la probabilidad de ocurrencia para saber lo que se requiere en cada una de las contingencias.

Objetivos estadísticos bivariados (Nivel de investigación relacional)


Son aquellos que se desarrollan con la participación de dos variables como es lógico  corresponden al nivel investigativo relacional en este nivel podemos realizar tres pasos intermedios que son: comparar, asociar o correlacionar que es lo mismo y luego realizar la medida de tal asociación:
uLa comparación se puede realizar entre grupos, pero también se puede comparar entre el mismo grupo a través de sus dos medidas que realizamos antes y después,
Asociar o correlacionar implica conocer si hay dependencia entre dos variables ya sean categóricas o numéricas
Medir la asociación, implica medir la concordancia si las variables son categóricas o la correlación si la variables son numéricas.
1. Comparar (grupos): Representa el análisis bivariado más básico y cuenta con una variable fija que es el criterio de conformación de grupo y una variable aleatoria que es la que vamos a medir en el proceso de la recolección de datos. Su finalidad es diferenciar entre los grupos participantes alguna característica en estudio. La comparación inicial siempre es a dos colas para ver si hay diferencia o no; si hay varios grupos la variable de agrupación al final tendrá que dicotomizarse y complementarse con un test direccional con una sola cola.
El sistema de hipótesis implica plantear una hipótesis alterna que nos indica la diferencia y una hipótesis nula que niega la diferencia la prueba estadística que utilizamos es Chi cuadrado de homogeneidad si la variable aleatoria es categórica o t de Student para grupos independientes si la variable aleatoria es numérica
2. Comparar (antes-después): Es la comparación de un mismo grupo antes y después de un periodo de seguimiento y en ese caso se llama observacional o de una intervención en ese caso se llama experimental; a fin de verificar los cambios producidos en la variable de estudio y siempre corresponden a estudios longitudinales porque implica realizar medidas repetidas. Estas comparaciones pueden ser de individuo a individuo o también de población a población.
Nuestra hipótesis es que existe variación entre las medidas antes y después, la hipótesis nula dirá que no existe variación entre estas dos medidas, las pruebas estadísticas Chi cuadrado de McNemar si la variable aleatoria es categórica o t de Student para muestras relacionadas si la variable aleatoria es numérica.
3. Asociar (categorías) o Correlacionar (unidades): Ambas variables son aleatorias en este punto, la correlación puede significar el primer paso para la asociación, esto es muy utilizado cuando se realiza minería de datos. Para correlacionar hay que definir las unidades de medición en ambas variables y para asociar hay que definir los factores de interés en estas mismas variables.
El estadístico de prueba para esta asociación es el Chi cuadrado de Independencia si queremos asociar variables categóricas y la correlación de Pearson si el análisis se desarrolla con dos variables numéricas. La hipótesis del investigador es que existe dependencia y la hipótesis nula dirá que tal dependencia no existe traducido también como independencia.
4. Concordar o correlacionar (Como valor predictivo): Cuantifica la asociación encontrada en el punto anterior o la correlación dependiendo  de la naturaleza de las variables que hayamos incluido en el estudio, la concordancia es una medida de correlación como el índice de concordancia y el coeficiente r de Pearson es una medida de correlación. La concordancia puede corresponder a diferentes observadores o a diferentes instrumentos. La concordancia puede ser concurrente si es que los sucesos son o se dan en simultáneo, puede ser predictiva si uno de ellos ocurre antes que el otro y predice o permite predecir su ocurrencia.
El estadístico es un índice de concordancia, Índice Kappa de Cohen para las variables  categóricas y el coeficiente r de Pearson para las variables numéricas, este coeficiente varia de 0 a 1 mientras más alto sea el coeficiente mejor será la concordancia o la correlación detectada

Objetivo estadístico comparar (Esta en todos los niveles investigativos)


Se trata del objetivo más versátil de todos los utilizados  en investigación porque se encuentra en todos los niveles investigativos, cuando pensamos en comparar habitualmente imaginamos dos grupos y esperamos encontrar una característica que los diferencie, pero también podemos comparar dos poblaciones  del mismo modo podemos comparar dos individuos:
1. En el nivel exploratorio
Encontramos a las comparaciones sin métodos estadísticos y tenemos dos casos cuando comparamos dos grupos o comunidades como por ejemplo la comparación de las costumbres a la hora del parto entre la Región Quechua y Aymara, por otro lado en los estudios de casos la población es un solo individuo y podemos comparar la opinión de dos especialistas en el diagnóstico de un paciente dentro del marco de la presentación de un caso clínico.
2. En el nivel descriptivo
Cuando evaluamos a dos poblaciones en su totalidad y no utilizamos la muestra, no se requiere de aplicar pruebas estadísticas por cuanto no es necesario realizar inferencia estadística, así tenemos que la comparación del rendimiento académico de dos estudiantes en el momento de su graduación no requiere de pruebas de hipótesis y solo se verifica quien tiene el mayor promedio porque estamos comparando dos poblaciones estos alumnos ya no van a rendir mas exámenes y contamos con los datos de todo su record académico . En el nivel descriptivo las diferencias numéricas encontradas pueden sugerir la comparación más adelante a nivel de prueba de hipótesis.
3. En el nivel relacional
El contraste de independencia entre dos variables presenta tres modelos matemáticos: uno de ellos conocido como el modelo II cuenta con una variable fija y la otra aleatoria este es el modelo que corresponde a la comparación, la variable fija es la variable criterio de conformación de grupo y la variable aleatoria es la que estamos evaluando. El objetivo comparativo a nivel bivariado entonces cuenta con un factor fijo y un factor aleatorio. La comparación puede ser de grupos independientes o de muestras relacionadas y necesariamente requiere el planteamiento de hipótesis.
4. En el nivel explicativo
El análisis comparativo estratificado permite realizar el control estadístico esto en los estudios observacionales así por ejemplo el test de Mantel-Haenszel es el mejor representante de este objetivo estadístico. La finalidad esta comparación estratificada es descartar asociaciones aleatorias, casuales o espurias que se encontró en el nivel anterior. A nivel experimental comparamos los grupos aleatorizados grupo experimental versus grupo blanco. Dentro de los diseños experimentales la factorización de las variables independientes también corresponde al objetivo comparativo.
5. En el nivel predictivo
Podemos comparar el pronóstico de la enfermedad o del tiempo de supervivencia de dos tratamientos con pacientes que sean tratados con dos medicamentos, podemos citar una técnica estadística específica para esta comparación como lo es el análisis de supervivencia de Kaplan-Meier. Podemos comparar el valor predictivo de dos procedimientos diagnósticos; por ejemplo podemos comparar el valor predictivo de dos métodos para estimar el peso fetal previo al nacimiento haber cuál de estos dos es el mejor.
6. En el nivel aplicativo
Podemos comparar dos indicadores del proceso o dos indicadores de resultado de una intervención a fin de detectar cuál de estos predice mejor el impacto que tiene nuestra intervención sobre la población, con el fin de redireccionar nuestros esfuerzos, pero también podemos comparar dos intervenciones mediante un mismo indicador, en ese caso se están poniendo a prueba la efectividad de una intervención esto es muy utilizado en el marketing, si lanzamos dos campañas publicitarias una través de los medios escritos y otra a través del medio televisivo cuál de estos dos procedimientos tendrá mejor retorno a la inversión estamos comparando dos procesos destinados a modificar la situación actual por eso nos encontramos en el nivel aplicativo.